skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dombos, A C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Massive stars are a major source of chemical elements in the cosmos, ejecting freshly produced nuclei through winds and core-collapse supernova explosions into the interstellar medium. Among the material ejected, long-lived radioisotopes, such as60Fe (iron) and26Al (aluminum), offer unique signs of active nucleosynthesis in our galaxy. There is a long-standing discrepancy between the observed60Fe/26Al ratio by γ-ray telescopes and predictions from supernova models. This discrepancy has been attributed to uncertainties in the nuclear reaction networks producing60Fe, and one reaction in particular, the neutron-capture on59Fe. Here we present experimental results that provide a strong constraint on this reaction. We use these results to show that the production of60Fe in massive stars is higher than previously thought, further increasing the discrepancy between observed and predicted60Fe/26Al ratios. The persisting discrepancy can therefore not be attributed to nuclear uncertainties, and points to issues in massive-star models. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser–Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for$$^{73}\hbox {Zn}$$ 73 Zn (n,$$\gamma $$ γ )$$^{74}\hbox {Zn}$$ 74 Zn was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and$$\gamma $$ γ -ray strength function ($$\gamma \hbox {SF}$$ γ SF ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and$$\gamma \hbox {SF}$$ γ SF , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)